
ZAD-A12l 702 SIMULATION 0F ACTIVE AND PASSIVE M ILMETER-WAVE 1/
(35GHZ) SENSORS BY TIME (U) ARMY ARMAMENT RESEARCH AND

DEVELOPMENT COMMAND ABERDEEN PROVI.,

UNCLASSIFIEP D F STRENZWILK ET AL. NOV 82 ARBRL-MR-03214 F/G 17/2 NL

MEEEMIEE NI

EEIhEEhEh h

IIEII~hIIIII



1.0 132J& 1.

a. _

1. 1"A -- l6

MICROCOPY RESOLUTION TEST CHART

WAIIONAt. BUREAU OF STANfDAROS-1963-A



tb MEMORANDUM REPORT ARBRL-MR-03214

4 -

SIMULATION OF ACTIVE AND PASSIVE

CMILLIMETER-WAVE (35GHz) SENSORS

By TIME SERIES ANALYSIS

Denis F. Strenzwilk
Richard T. Maruya a

November 1982

II

Approved for pI*11c relme t"stributim vmlidtW.

~DTIC

• , 8511 OI O7S

CS -iV CE

I~ ~ ~ ~ ~ ~ ~ ~~0 472 II

lI

llllI III 

I

I III



Destroy this report when it is no longer needed.
Do not return it to the originator.

Sacondary distribution of this report is prohibited.

Additional copies of this report may be obtained
from the National Technical Information Service,
U. .S. Department of Commerce, Springfield, Virginia
22161.

The findings in this report are not to be construed as
an official Department of the Army position, unless
so designated by other authorized documnts.

Jw"m of a~s nomn or *w wm ap,~ pmme in *sa msp
*0. pet don tke fbR*,.Wis ef O fawF.'c Puduw.



UNCLASSIIIK
SECURITY CLASSIFICATION OF THIS PAGE tlUt., Dola BIeM

REPORT DOCUMENTATION PAGE ______ __M_ __M_ _POW

!. REPORT NUMBE . GOVT ACCESSION NO. S. RECIPIENTS CATALOG NUMIER

4. TITLE (iMd US.) S. TYPE OF REPORT A PENOO COVERED

Simulation of Active and Passive Millimeter-Wave
(35GHz) Sensors by Time Series Analysis, s. PERFORMING ORG. REPORT NUMBER \'

7. AUTHOR4.) S. CONTRACT OR GRANT NUMBER(e)

, Denis F. Strenzvilk

Richard T. Maruyama
S. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

AREA & WORK UNIT NUMBERS

US Army Ballistic Research Laboratory
ATTN: DRDAR-BLB
Abiarma4n Prnvinj trfnn V l1Ir III
II. CONTROLLING OFFICE NAME 12

. 
REPORT DATE

US Army Armament Research & Development Command November l9R2

US Army Ballistic Research Laboratory (DDA"-BL) IS. NUMBER OF PAGES
.ereen P rnvuno CGrn'nrM Mfl . ?ll 60______________

14. MONITORING AGENCY NAME I-ADDNESSOldtri-'0E from Conbolling Office) 1S. SECURITY CLASS. (of this report)

ISe-"A N PI lON/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract tedi n Blook 20, It different Irom Report)

IS. SUPPLEMENTARY NOTES

IS. KEY WORDS (Contlnue on reveree side it neewt7 end ident#Iy b block nimiber)

Time Series Analysis, Radar, Radiometer, Clutter, Millimeter-Wave Sensors,
Background Noise, Simulation

20. AT,- ACTrCO mM m m ebb feeede 11 '7MI l "I*) (hun)

Analog voltage signals from a millinete--, a (MMII) radiometer (passive
sensor) and radar (active sensor) were collected over varying grassy terrains
at Aberdeen Proving Ground (APG), Maryland .t July 1980. These measurements
were made as part of continuing studies of MW sensors for smart munitions.
The signals were digitized at a rate of 2,000 observations per second and then
analyzed by the Box and Jenkins time series approach. This analysis reports on

DOD JS 1F 3 mON OP NOV 61 IS 0OLETE UNLASSIFIE)

SECUhYc LMICATO R OF THIS PAGE Whn sD08.. ..



UNCLASSIFIED
SECUMITY CLASSIFICATION OF THIS PAGS(lW DaO MMW*OM

the characterization of these data sets. The passive time series signals
resulted in a simple autoregressive-moving average process, similar to a
previous set of data taken at Rome Air Development Center in Rome, N.Y. by
Ballistic Research Laboratory. On the other hand, the radar data (active
sensor) required a data transformation to enhance the analysis. In both
cases the signals were well characterized using the Box-Jenkins time series
approach. 4 •

''I

. I

UNCL"SIFIID
SCURITY CLASSIFICATION OF THIS PAOC5(Whm Desa 0E00



TABLE OF CONTENTS

PAGE

LIST OF FIGURES ............................................................................................ $

LIST OF TABLES ................................................................................................ 7

I. INTRODUCTION ................................................................................................ 9

II. TIME SERIES ANALYSIS .............................................................................. 12

Ill. MILLIMETER-WAVE (MMW) RADIOMETRIC ANALYSIS ..................... 14

IV MILLIMETER-WAVE (MMW) RADAR ANALYSIS .................................... 31

V. SUMMARY ...................................................................................................... 49

ACKNOWLEDGEMENTS .................................................................................. 53

REFERENCES ................................................................................................. 54

APPENDIX A ...................................................................................................... 55

DISTRIBUTION LIST ..................................................................................... 57

~y

. .. .. .. . . . .. . . .

3

Ill l.
.. . . . .. . .. . . -. .. . . •. . .. i ldm ~ l - II III I " I~ lII .. .. .I .... .L,• -



LIST OF FIGURES

FIGURE PAGE

I The Actual Contrast Temperature Data T(K) for a Field at 90G Slant Range
is Plotted Against the Integer Number L of Time Steps, (At - .5 ms) ............ t0

2 The Actual Radar Cross Section o(m 2) for a Field at 90m Slant Range is
Plotted Against the Integer Number L of Time Steps, (At -. 5 mS) ............. 11

3 Estimated Autocorrelation (rk ) and Partial Autocorrelation
Functions (qk) for the k th Lag of Radiometric Dat .................................... 16

4 Plot of the Estimated ACF(rk) and PACF(qbk) of
Residuals ( ARIMA(1,0O) ) for the k th lag ............................................... 18

5 Plot of the Estimated ACF(rk) and PACF(isk) of
Residuals ( ARIMA(2,0,0) ) for the k th lag .................................................. 20

6 Histogram of Residuals of the ARIMA(2,0,0) ............................................... 22

7 Plot of Estimated ACF(rk) and PACF(Sk) of Residuals
(ARIMA(2,0,(2)) ) for the k th Lag .............................................................. 23

8 Plot of Estimated ACF(rk) and PACF(Ok) of Residuals
(ARIMA(1,0,1) ) for the k th Lag ............................. 25

9 Histogram of Residuals of the ARIMA(1,0,1) ............................................... 27

10 Plot of Estimated ACF(rk) and PACF(Ok) of Residuals
(ARIM A(I,0,2) ) for the k th Lag ................................................................ 28

Ii Histogram of Residuals of ARIMA(l,0,2) ..................................................... 30

12 Plot of Estimated ACF(rk) and PACF(0k) of Residuals
(ARIMA(1,0,3) ) for the k th Lag ................................................................ 32

13 The Actual Uncalibrated Radar Data for a Field at 90m Slant Range
is Plotted Against the Integer Number L of Time Steps, (At - .Sms) .......... 35

14 Histogram of the Actual Uncalibrated Radar Data .......................................... 36

S



LIST OF FIGURES (CONTINUED)

FIGURE PAGE

15 Estimated Autocorrelation (rk ) and Partial Autocorrelation
Functions (#k) for the k th Lag of Radar Dat .................................................. 38

16 Estimated Autocorrelation (rk) and Partial Autocorrelation
Functions (0k) for the k th Lag of Transformed Radar Data ......................... 39

17 Plot of Estimated ACF(rk) and PACF(qk) of Residuals
(ARIMA(2,0,0) ) for the k th Lag of Transformed Radar Data ................... 43

18 Histogram of Residuals of ARIMA(2,0,0) for the Transformed Radar Data .... 45

19 Histogram of Residuals of ARIMA(2,0,(2,3,4)) for the Transformed
Radar Data ........................................................................................................ 47

20 The Simulated Contrast Temperature Data T(K) for a Field at 90m Slant
Range is Plotted Against the Integer Number L of Time Steps, (At - .Sins).. 50

21 The Simulated Radar Cross Section ar(m 2) for a Field at 90m Slant Range
is Plotted Against the Integer Number L of Time Steps, (At - .Sms) ...... 52

6



LIST OF TABLES

TABLE PAGE

I Estimated Autocorrelation and Partial Autocorrelation Functions
of Radiometric Daa............................................... 17

2 Estimated Autocorrelation and Partial Autocorrelation. Functions
of Residuals (ARIMA(1O0,0)) ....................................................... 19

3 Estimated Autocorrelation and Partial Autocorrelation Functions
of Residuals (ARIMA(2O ,0))....................................................... 21

4 Estimated Autocorrelation and Partial Autocorrelation Functions
of Residuals (ARIMA(2,0,(2)))..................................................... 24

5 Estimated Autocorrelation and Partial Autocorrelation Functions
of Residuals (ARIMA(I,0,1 )) ................................................... 2

6 Estimated Autocorrelation and Partial Autocorrelation Functions
of Residuals (ARIMA(1,0,2)) ..................................................... 2

7 Estimated Autocorrelation and Partial Autocorrelation Functions
of Residuals (ARIMA(1,03))....................................................... 33

8 Summary of ARIMA( e) Models Enterained for Passive Sensors
(Backcasting Method) ................................................................ 34

9 Estimated Autocorrelation and Partial Autocorrelation Functions
of Radar Data ......................................................................... 40

10 Estimated Autocorrelation and Partial Autocorrelation Functions
of Transformed Radar Data.......................................................... 41

11I Estimated Autocorrelation and Partial Autocorrelation Functions
of Residuals of Transformed Radar Data (ARIMA(2,0,0)) ..................... 44

12 Summary of ARIMA Models for Transformed Radar Data by Backcmsting
Method (Y', - In (Zt - 2.91 ); Y - -1. S5,Sy - 0.37) ............................ 46

13 Ot;Y'-r Data Sets (Backcasting Method) ............................................. 48



I. INTRODUCTION

The responses of a millimeter-wave (MMW) radiometric (passive) sensor and a MMW
radar (active) sensor to varying grassy terrains and targets were measured in July 1980 by
BRL at Aberdeen Proving Ground (APG),Maryland. These measurements were made as
part of continuing studies of MMW sensors for smart munitions. The analog voltage
signals of the sensors were digitized at a rate of 2,000 observations per second,which was
the same rate as the data recorded in August 1978 at Rome, New York. Test ranges were
selected on Spesutie Island at APG. Then a helicopter was instrumented with an active
and passive sensor on a spinning mount,which revolved at three (3) revolutions per
second (rps) and was flown over the ranges on runs of several seconds duration. The
passive or radiometric sensor was similar to the sensor used in the August 1978 test and
thus the results were expected to have similar characteristics (see Figure 1).

The analysis of passive and active sensors is an on-going investigation at BRL. By using
the Box-Jenkins time series modeling approach a successful simulation 2 of the response
of the passive sensor to varying grassy terrains in the 1978 tests at Rome has provided a
realistic way to introduce false alarms and the distortion of the target signatures due to
clutter into the study of the performance of various weapon systems. The response of the
passive sensor was modeled by an Autoregressive-Intergrated-Moving-Average (ARIMA)
process, which was first order autoregressive and first order moving average. The purpose
of this research was to provide a simulation of the response of the passive and active
sensors used in the 1980 APG tests by time series analysis. The model for the passive
sensor was expected to be the same as the previous study.

On the other hand, the signal response for the radar (active) sensor was different in
character, in that the signal patterns were not symmetric about the mean. That is, the
signals in the positive directions were larger than in the negative direction (see Figure 2).
In order to best utilize the Box-Jenkins time series modeling approach, a data
transformation was necessary. The purpose of the data transformation was to employ the
data in a form that will improve the analysis, without altering the data structure (in terms
of the autocorrelation and partial autocorrelation function).

One of the Biomedical computer packages (BMDP) from UCLAviz., Statistical

Software for Time Series Analysis, was used for this analysis3. There are two estimation
methods of the model parametersthe first being the conditional least square method
(LSM) and the second being the backcasting method (BM).

Box,G. E. P. and Jenkins, G. M., "Time Series Analysis:

Forecasting and Control",Holden-Day, Inc.,San FranciscoCa.,1970.

2 MaruyamaR. T.,"A Time Series and Intervention Analysis of Millimeter-Wave (MMW)

Radiometric Data",ARBRL-TR-02338,July 1981.

3 Lon-Mu Liu,"User's Manual for BMDQ2T(TSPACK) Time Series Analysis (Box-
Jenkins)",Technical Report No. 57, Department of Biomatherratics, UCLA, 1979.
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IL TIME SERIES ANALYSIS

In this report time series analysis is used to simulate the signals from a passive and an
active (MMW) sensor. It seems fitting to explain the basic ideas of time series, and to
introduce some terminology so that the reader can better follow our report. The digitized
values of the analog voltage signals represent a time series ZI,Z 2,...,ZN of N sucoessive
observations, which are regarded as a sample realization from an infinite population of
such time series that could have been generated by the stochastic process. Both the
radiometer and radar data have been modeled as though they were derived from a
stationary process, which implies that the mean and variance are constant, and that the

error terms are normally distributed.

An autoregressive model is one in which the current value of the process is expressed
as a finite, linear aggregrate of the previous values of the process and an error term or so-
called shock at = N(O,Oa 2), where ora is the standard deviation of the white noise. If the
data is centered about the mean gt, then Z,- Z, - it can be represented as an
autoregressive (AR) process of order p, viz.,

The model contains p+2 unknown parameters At,4)t,E2,...,40p, 'a2 , which must be
estimated from the data.

An autoregressive operator of order p can also be defined in terms of the backward
shift operator B ( where BZ, - Zt-1 ) by

*,(B) - -IB-- 2B 2- -pB P  (11.2)

and then Equation (11.1) becomes

O,(B )2t -a t . (11.3)

A moving average (MA) process of order q is one in which 2, is made to be linearly

dependent on a finite number q of previous a 's, viz.,

2t - at - 91a,_1 - 02O,-2 ... Oqat_ . (I1.4)

It contains q+2 unknown parameters 14,0t,...,l0 q , fa 2 , which must be estimated from
the data.

A moving average operator of order q can be defined by

O(B) - I - oB - 02B2 -.. OqB € , (11.5)

so that Equation (11.4) can be written as

12



2
r -9O(B)a,. (11.6)

Frequently, the two processes are combined to include both autoregressive and moving
average terms in the model. Thus, the mixed autoregressive -moving average model is

2 t -,01 2 t-I +.-. +02,_p + a, -9 1a,_ ...- . ,a.. (11.7)

or

#(B2 - O(Ba),, (11.8)

where there are p+q+2 unknown parameters ,u01l...,*,; *i,...'eq; o2 that must be
estimated from the data.

Many time series exhibit nonstationary behavior. Certain types of nonstationarity can
be removed by differencing the data. In terms of the backward shift operator B, the time
series observations (Z,) can be differenced d times. Thus, the new operator W(B) can be
defined as

O(W) - ,(B)(l-B ), (1.9)

where *(B) is the stationary operator in Equation (11.2). The general model, which
represents the homogeneous nonstationary behavior can now be written as

t)Z -, -,B)(-BYZI - (B)a, (1.10)

that is

W(B) W -(B); , ([1.1t)

where

Wt - (I-BY'Z, . (11.12)

It can be seen that Equation (11.11) means that the d'th difference of the process is
stationary. In our report d was always zero since our original data was stationary. The
process defined by Equation (11.11) and (1.12) is called an autoregressive Integrated
moving average (ARIMA) process of order (pd,q).

Use was also made of the BMDQ2T(TSPACK) TIME SERIES PACKAGE computer
program mentioned in reference 3. This program evaluates the mean, standard deviation,
autocorrelation function (ACM), and the partial autocorrelation function (PACF) of tte
N successive observations of the Z,'s. A histogram of the variable Z and a cumulative
histogram of the variable Z is also provided. When the radar data was analyzed the original
data (Z,) was transformed into ( Yt ) by a natural log transformation (Box-Cox) and then
all the above quantities were provided for the (Y,).

13



The ACF is a diagnostic tool, which tells how the values of the tinm series, (Zt, Zt.d )
separated by k time steps or k lass, are correlated with one another. The PACF is a
diagnostic tool, which shows the autocorrelaton between the values of the time series,
(ZI, Z,-), when the effects of the variables Z,-,, Zj_ 2, ... , Z,_,+. are fixed. If the ACF
and PACF of the original data are plotted, a clue is given for a tentative starting ARIMA
model. An AR process of order p has an ACF, which is infinite in extent with damped
exponentials and/or damped sine waves, while its PACF is finite in exten and cuts off
after p nonzero values. An MA process of order q has an ACF, which is finite in extent
and cuts off after q nonzero values, while its PACF is infinite in extent and dominated by
damped exponentials ad/or sine waves. A mixed process of order (pOq) has an ACF,
which is infinite in extent with damped exponentials and/or damped sine waves after the
first q-p lags, while its PACF is infinite in extent and dominated by damped exponentials

and/or sine waves after the first p-q lags.

After a tentative model has been identified, the ACF and PACF of the residuals (a,),
which are the estimates of the error terms for a particular sampling of data, are plotted to
see if they indicate the normality or white noise assumed by the time series approach. The
residuals of a white noise process have an ACF and PACF, which have value 1 at zero lag
and value zero elsewhere. If the residuals do not appear to be normal, a new ARIMA
(p,dq) model is tried until the residuals indicate normality. The program also estimates
the constants in the (p,d,q) model by the conditional least squares method and the
backcasting method. For our problem the parameters found from the backcasting method
were selected. There is only a slight difference in the values of the parameters evaluated
by the different methods. The interested reader can find much more detail on time series
analysis in reference 1.

III MILLIMETER-WAVE (MMW) RADIOMETRIC ANALYSIS

A previous set of data, which was taken over a i assy field under similar conditions at
Rome, N.Y., in August 1978, was analyzed in 1981 . The spin rate of the radiometer at
the Rome tests was 4 rps. The result of that investigation was that an ARIMA(l,0,1)
process best described the passive signals. Because of the similarities in the sensors it was
expected that a time series of the APG data would again result in a first order
autoregressive-moving average (ARIMA(1,0, )) process.

This analysis was done to characterize clutter data (background) free of any
intervention such as, bodies of watermetallic vehiclesmetal towersetc. Both passive and
active millimeter-wave signals were collected simultaneously. The sensors were mounted
together such that the same section of terrain was being observed at the same instant of
time. There is some difference in the area of the ground being observed by the two
sensors. The footprint of the active sensor is smaller than that of the passive sensor.

The radiometric data shown in Figure 1 has been calibrated in Kelvins. The data that
the following analysis concerns are uncalibrated. To obtain calibrated data the mean (6.43)
of the uncalibrated data must be substracted from each uncalibrated data point and the
result multiplied by a calbration constant of 81.4 K per unit.

14



The Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) of
all the data in this report were carried out to 36 lags on the BMDP package, but usually
fewer lags were needed to display the important features. For the passive sensor the ACF
and Pc are shown in Figure 3, and the values plotted are given in Table 1. The decaying
characteristics of the ACF are theoretically associated with an AR() model. Thus, an
ARIMA(1,0,0) model was first used to characterize this data.

The ARIMA(1,0,0) fit resulted in the residuals (a,) of this fit having some remaining

structure as shown in Figure 4. The values plotted are listed in Table 2. The ACF at lags
one (1) and two (2) as well as the PACF at lags one and two have values that do not
indicate normality. The lack of fitdetermined from the analysis on the residuals, indicates
that either a moving-average term or an autoregressive term should be added. The cutoff
after the second PACF lag indicates that an autoregressive term should be added, hence
an ARIMA(2,0,0) was attempted.

The ARIMA(2,0,0) model was fitted to the data set as shown in Figure 5. The values
plotted are given in Table 3. The residual analysis of the ARIMA(2,0,0) model did
remove the significant value of the ACF at lag one, but both values of the ACF and
PACF at lag two (2) remain significant, indicating a need for further analysis. A histogram
of the residuals in this case is shown in Figure 6, and gives questionable evidence of being
normally distributed. The only unresolved problem area in the analysis of the
ARIMA(2,0,0) was with the remaining residual autocorrelation at the second lag.

To resolve the problem of the significant value of the ACF at lag 2, a moving average
term of order two was added to the ARIMA(2,0,0) structure. The ARIMA(2,0,(2)) fit,
shown in Figure 7, did remove both the large values at lag 2 of the ACF and PACF to a
point where it was adequate for the purpose of characterizing the data. The values are
given in Table 4. Therefore, this time series analysis seemed satisfactory.

On the other hand, if a moving average term were added to the ARIMA(1,0,0) model
instead of another autoregressive term, would the ARIMA(1,0,1) structure remove the
remaining ACF lags? To answer this question the the ACF and PACF of the residuals
were plotted in Figure 8, and their values are given in Table 5. A histogram of the
residuals indicated normality as can be seen in Figure 9. The only negative ineication is
that the ACF at lag two (2) and the PACF past lag two indicated a decaying effect.

The analysis of these residuals indicated that an additional moving average term might
be included to remove the autocorrelation (ACF) at lag two;hence, the ARIMA(1,0,2)
model was the next logical step in the sequence of analysis for the millimeter-wave
radiometric data. The plot of the residuals shown in Figure 10 again indicated some minor
problems with the analysis. The values plotted are given in Table 6. A histogram of the
residuals seemed normal as can be seen in Figure 11. The problem is that the value of
both the ACF and PACF at lag three is now believed to be significant. Some minor
improvements, such as a decrease in the standard deviation, have taken place by adding
the second moving average term to the ARIMA(1,0,1) model, but these improvements
are not significant.

is
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TABLE I

ESTIMATED AUTOCORRELATION AND PARTIAL AUTOCORRELATION
FUNC'ONS OF RADIOM([rRIC DATA

MEAN - 6.43
STANDARD DEVIATION - .0595

ACF

670 Observations
1 2 3 4 5 6 7 8 9 10

rk Lags 1-10 .909 .797 .739 .716 .707 .703 .697 .694 .698 .691

11-20 .680 .673 .668 .656 .643 .628 .606 .590 .583 .577

21-30 .558 .544 .545 .551 .558 .563 .557 .544 .542 .537

31-33 .519 .499 .494

PACF

670 Obrvations

1 2 3 4 5 6 7 8 9 10

*Ok LaP 1-10 .909 -.177 .281 .086 .127 .100 .066 .097 .103 -.010

11-20 .070 .040 .032 -.010 .017 -.027 -.046 .012 .007 -.017

21-30 -.074 .038 .044 .019 .063 .038 -.007 .000 .080 -.024

31-33 -.049 -.019 .055
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Residuals (ARIMA(1,0,0) ) for the k th lag.
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TALE 2

ESTIMATED AUTOCORRELATION AND PARTIAL AUTOCORRELATION
FUNCTIONS OF RESIDUALS

(ARIMA(1,0,0))

MEAN - -.0000301
STANDARD DEVIATION - .0245

ACF

670 Observations
1 2 3 4 5 6 7 8 9

rt Lags 1-9 .169 -.262 -.159 -.044 .006 .043 .019 -.019 .095

PACF

670 Observations
1 2 3 4 5 6 7 8 9

44k Lags 1-9 .169 -.299 -.057 -.097 -.034 .006 -.015 -.016 .121

19
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TABLE 3

ESTIMATED AUTOCORRELATION AND PARTIAL AUTOCORRELATION
FUNJCTIONS OF RESIDUALS

(ARTMA(2,O,O))

MEAN - -.0000174
STANDARD DEVIATION - .0241

ACF

670 Observations
1 2 3 4 5 6 7 8 9

rk Lags 1-9 .053 -.242 -.070 .016 .035 .068 .042 -.019 .116

PACF

670 Observations
1 2 3 4 5 6 7 8 9

o6k Lags 1-9 .053 -.246 -.044 -.040 .009 .061 .047 .011 .157

21
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(ARTMA(2,0.(2)) ) for the k th Lag.
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TALE 4

ESTIMATED AUTOCORRELATION AND PARTIAL AUTOCORRELATION
FUNCIONS OF RESIDUALS

(ARTMA(2,0,(2)))

MEAN - -.0000403
STANDARD DEVIATION - .0229

ACF

670 Observations

1 2 3 4 5 6 7 8 9

r, Lass 1-9 -.005 .020 -.172 -.041 -.058 -.008 .004 -.052 .086

PA(cF

670 Observations1 2 3 4 5 6 7 8 9

ok Lags 1-9 -.005 .020 -.172 -.043 -.064 -.038 -.009 -.079 .074

a: 24
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TABLE 5

ESTIMATED AUTOCORRELATION AND PARTIAL AUTOCORRELATION
FUNCTIONS OF RESIDUALS

(ARTMA( 1,0,1))

MEAN --. 000150

STANDARD DEVIATION .. 0237

ACF

670 Observations
1 2 3 4 5 6 7 8 9

rk Lags 1-9 -.047 -.141 -.045 .021 .036 .066 .059 -.023 .128

PACF

670 Observations
1 2 3 4 5 6 7 8 9

*k Lags 1-9 -.047 -.144 -.061 -.005 .022 .071 .079 .009 .158
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TAHLE6

ESTIMATED AUTOCORRELATION AND PARTIAL AUTOCORRELATION
FUNCMIONS OF RESIDUALS

(ARIMA(I,0,2))

MEAN - -.0000429
STANDARD DEVIATION - .0231

ACP

670 Observatiom
1 2 3 4 5 6 7 8 9

rk Lags 1-9 .067 .025 -.194 -.068 -.092 -022 -.013 -.047 .075

PACF

670 Observation
1 2 3 4 5 6 7 8 9

*5 Lap 1-9 .067 .018 -.199 -.036 -.075 -.046 -.024 -.082 .068
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Neverthelessthe ARIMA(I0,3) model was tentatively used to remove the significant
values of both the ACF and PACF at the third lag. A plot of the ACF and PACF of the
residuals is shown in Figure 12, with the values given in Table 7. After all these modeling
attempts, the ARIMA(1,0,3) model seems to characterize the radiometric data best. Both
the ACF and PACF of the residuals seem small and the standard deviation of 0.0224. is
smaller than any other model that was studied as can be seen in Table 8.

At this point in the analysis a reflection on the ability of each tentative model to
characterize this data parsimoniously should be addressed. Although the ARIMA(1,0,3)
may be slightly better than the other models, a summary of the ARIMA models in terms
of parameters and residuals indicates that the ARIMA(1,0,1) structure is almost as good
as any other satisfactory model, and it only requires two parameters. Therefore,based on
the principle of parsimony the ARIMA(1,0,1) model was chosen to characterize the
radiometric data.

If the following definitions are made
a, = N (0,'ra 2),(l.)

and

2,-Z,-,, (111.2)

where the mean of Z, is IL, then the ARIMA(1,0, ) becomes

(I - ), - I -91 )at, 113

where the backward shift operator B is defined as B2, -2,t- , and Ba, -a,-, . If
Equation (111.3) is expanded and rearranged, then in terms of the original data Z, becomes

Zt - ( - 4 1 )/A + 4,Z,_- I + a, - Gla,_ 1 . (Ili.)

IV MILLIMETER-WAVE (MMW) RADAR ANALYSIS

The radar data was collected simultaneously with the radiometer data at APG, Md. The
radar is an active sensor, which means that it sends out a signal that is scattered otff objects
on the ground and back into its receiving antenna. On the other hand the radiometer does
not send signals, but only receives them from the ground; hence it is referred to as a
passive sensor. Uncalibrated signals from the radar sensor are presented in Figure 13. To
obtain the calibrated radar data of Figure 2 the zero cross section reference level (2.95) of
the uncalibrated data must be substracted from each uncalibrated data point and the result
multiplied by a calibration constant of 8.0 square meters per unit.

Figure 14 is a histogram of the uncalibrated radar data, which shows the skewness of
these signals. It is obvious that the deviations are not symmetric about the mean as well as
having positive deviations larger in magnitude than those in the negative direction.
Because of this skewness in the radar data, a data transformation was necessary to best
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TAHLE 7

ESTIMATED AUTOCORRELATION AND PARTIAL AUTOCORRELATION
FUNCTIONS OF RESIDUALS

(ARIMA(I,0,3))

MEAN - -0000469
STANDARD DEVIATION - .0224

ACF

670 Observations
1 2 3 4 5 6 7 8 9

rk Lags 1-9 .012 .025 -.001 -.067 -.018 -.017 .010 -.063 .079

PACF

670 Observatiom
1 2 3 4 5 6 7 8 9

%, Lags 1-9 .012 .025 -.001 -.068 -.017 -.013 .011 -.068 .078
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TABLE 8

SUMMARY OF ARIMA(W) MODELS ENTERTAINED FOR PASSIVE SENSORS
(BACKCASTING MErl-IOD)

ARIMA(p,dq) ESTIMATED

(p,dq) PARAMErERS WHITE NOISE NOTE

(1) (1,0,1) #- 0.9127 f" - -. 00003 Some remaining structure in the

centered - 0.0245 residuals (AR(2) or MA(1)].

(2) (2,0,0) LON1.086 f" - -00017 ACFat Lag

centered 02l -.-. 1902 S. - 0.0241

(3) (2,0,(2)) - 1.0913 ff --. 00004 ACFat LAg 3.

centered 2 - -. 1274 S, - 0.0229

- 0.3866

(4)& (1,0,1) - 0.8537 a- - -. 000015 ACFat LA& 2 with PACF

centered lju- -. 3569 S,-0.0237 at Lag 2 with decay.

(5) (1,0,2) I -0.9676 if - -.000043 ACF at IS 3.

centered - -. 028 S4 -0.0231

-0.4067

(6) (1,0,3) ;t - 0.9874 F" - -. 000947

centered -! -. 0654 SO -0.0224

i2 - 0.4342

W3 -0.2492

+The symbol S. is the estimated standard deviation.

*The ARIMA(I,0,1) results are as good as any abov, and based on the priziple of plmd.

mony one would choose the p-1, d-0, q-I model.
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utilize the Box and Jenkins method on this data set.

A natural logarithm (In) transformation was selected to transform the radar data (Zr)
into a new variable (Y,) in such a way that the new deviations are symmetric about the*,
mean. This logarithm transformation maintains the order of the original data and
symmetrically transforms the data to enhance the time series analysis.

The data transformation used is based upon a simple idea of equating the maximumand minimum distance from the mean value. Hence, take the maximum logarithm value

of the observations minus the mean value and equate it to the mean logarithm value
minus the minimum value. This procedure equates the magnitude of the maximum and
minimum deviations from the mean, thereby improving the symmetric properties.

max in(e) - mean In(e) - mean In(e) -min In(e). ([V.)

or

In( 3.40 + A )-In( 3.08 + A ) - In( 3.08 + A )-In( 2.96 + A). (IV.2)

The solution for A is -2.89.

The transformation, Y, - In( Z, - 2.89 ), which is based on improving the symmeLric
properties, needs a second minor adjustment. This minor adjustment was a correction in
the value of the parameter A to -2.91.

Y- In( Z, - 2.91 ), (IV.3)

where

mean Y, -- 1.85 ,

maximum Y, --. 7134,

minimum Yt -- 2.995,
and standard deviation SY - 0.370.

More details of the evaluation of the parameter A are given in Appendix A.

A nice property of this In( 0 ) transformation is that the order of the observations
remain the same as the original data. Hence, the ACF and PACF or the original
observation as well as the transformed data are similar. This similarity can be seen by
comparing Figure 15 with Figure 16. The values plotted are listed in Table 9 and Table
10, respectively.
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TABLE 9

ESTIMATED AUTOCORRELATION AND PARTIAL AUTOCORRELATION
FUNCTIONS OF RADAR DATA

MEAN - 3.08
STANDARD DEVIATION - .0697

ACF

670 Observations
1 2 3 4 5 6 7 8 9 10

rk Lags 1-10 .898 .682 .457 .289 .189 .135 .113 .111 .121 .140

11-20 .162 .187 .213 .239 .256 .252 .220 .178 .141 .127

21-30 .134 .150 .159 .152 .138 .130 .135 .143 .153 .162

31-33 .164 .147 .112

PACF

670 Observations
1 2 3 4 5 6 7 8 9 10

Atk Lags 1-10 .898 -.647 .253 .081 -.062 .009 .082 -.016 .028 .054

11-20 .045 .057 .054 .048 .001 -.046 -.019 .081 -.019 .097

21-30 -.011 .002 -.003 -.055 .101 -.004 .034 -.046 .096 -.019

31-33 -.040 -.044 -.013
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TABLE 10

ESTIMATED AUTOCORRELATION AND PARTIAL AUTOCORRELATION

FUNCTIONS OF TRANSFOR4ED RADAR DATA

MEAN - -1.85
STANDARD DEVIATION - .370

ACF

670 Observations
1 2 3 4 5 6 7 8 9 10

rk Lags 1-10 .895 .689 .481 .330 .242 .196 .178 .171 .168 .171

11-20 .180 .194 .215 .237 .250 .237 .198 .157 .125 .117

21-30 .132 .158 .179 .179 .171 .162 .158 .154 .153 .154

31-33 .151 .137 .111

PACF

670 Observations
1 2 3 4 5 6 7 8 9 10

Ok Lags 1-10 .895 -.567 .164 .103 -.018 .022 .054 -.002 .029 .079

11-20 .002 .065 .071 .022 -.006 -.070 .006 .060 -.030 .096

21-30 .025 .014 -.007 -.041 094 -.026 .025 -.024 .054 -.002

31-33 -.009 -. 028 -.035
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The sintsoidal pattern in the ACF and the cutoff pattern in the PACF indicate some
type of autoregressive (AR) process. A second order autoregressive model was therefore
entertained. The values of the ACF and PACF for the residuals are plotted in Figure 17,
and displayed in Table 11.

Although Table 11 indicates a reasonable degree of success, the residuals plotted as a
histogram in Figure 18 indicated that the residuals were not gaussian (normal). Hence, the
residuals did not satisfy the basic assumption in the Box and Jenkins method that is
explained in more detail in their book1.

To improve upon the time series model a number of moving average terms were
introduced into the analysis to remove any significant value of the ACF and PACF that
may exist at the different lags, as well as to satisfy the underlying white noise assumptions
of normality (N(0,oa 2)). See Table 12 for a breakdown of the ARIMA time series
analysis attempted during this investigation.

The ARIMA(2,0,(2,3,4)) process was able to characterize the millimeter wave radar
data well, where the random shock was truly random and symmetric as Figure 19
indicates. The question that always arises in this type of modeling effort is how general is
this particular ARIMA model. In order to answer such a question , some sets of
observations other than those already reported on were analyzed with the same ARIMA
model. The results are reported in Table 13.

This particular time series structure was able to characterize the other data sets, where
the estimated parameters remained relatively the same, indicating some degiee of
generality of this time series process.

If the following definitions are made,

a, = N(0,o'a 2), (V.4)

and

Wt - Y - (IV.S)

where the mean of Yt is $L , then the ARIMA(2,0,(2,3,4)) becomes

(1 -IB - 02B2 W -( - 2B2 - 3B 3 - 4B4 )a, (IV.6)

where the backward shift operator B is defined as BW, - W,_ ,and Ba, - ,a . If
Equation (IV.6) is expanded and rearranged,

Wt - lWt_! + 2Wt_ 2 + a, - 92at_ 2 - 03at_ 3 - G4at_4 (IV.7)

thus, Y, becomes

Yt - + 01( Y,- 1 - / ) + 02( Y,- 2 - ) + a, - 02at- 2 - 3at- 3 - 94a,-4. (IV.8)

Finally, in terms of the original data Z, becomes

Z, e Y,' + 2.91. (IV.9)
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TABLE 11

E.STIMATED AUTOCORR ELATION AND PARTIAL AUTOCORRELATION
FUNCTIONS OF RESIDUALS OF TRANSFORMED RADAR DATA

(ARIMA(2,0,0))

MEAN -. 0000668
STANDARD DEVIATION = 0.133

ACF

670 Obs::rvations
1 2 3 4 5 6 7 8 9 10

rk Lags 1-10 .110 -.060 -.101 .012 .101 .060 .087 .084 .008 .057

11-20 .044 .015 .022 .016 .119 .112 .008 .048 -.031 .001

21-24 .007 .031 .161 -.008

PACF

670 Observations
1 2 3 4 5 6 7 8 9 10

Ok Lags 1-10 .110 -.073 -.088 .030 .087 .033 .094 .091 .006 .075

11-20 .040 -.006 .016 .003 .096 .081 -.011 .065 -.038 -.018

21-24 -.019 -.006 .121 -.054
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TABLE 12

SUMMARY OiF ARIMA MODELS FOR TRANSFORMED RADAR DATA BY BACKCASTING METHOD +

WY, - In(Q, - 2.9 1);7 -- 1.85,Sy - 0.37)

ARIMA(p,d,q) ESTIMATED

(p,dq) PARAMET MRS WHITE NOISE NOTE

(1) (2,0,0) 1 - 1.4309 W -. 000067 Significant value for ACF and PACFat Ljg(l).

Ccntrced 42 - -. 5962 Sa -0.133

(2) (2,0,1) 4,i - 1.2816 f" - -. 000061 Residuals* not normal,N(0,o'a 2).

Centered 42 - -. 4638 S, -0.131

Oi- -. 2435

(3) (2,0,2) -1 1.0331 W - -. 000061 Residualso not nornal,N(0,ua 2)

Centered r2 -. 2715 S '=O.130

'i -. 4995

i2 --. 2381

(4) (2,0,(2,3)) .- 1.5021 i - -. 00006I Residuals' not normal,N(0,o', 2)

Centered L2 - -. 5787 S -. 131 Significant value of ACF and PACF at Lag(4).
02-.1790
03- .2445

(5) (2,0,(2,3,4)) . - 1.5261 f- - -. 00112 Residuals are normal,N(O,a, 2).
Centered !t2 --. 5339 S -0.129 The ACF and PACF are well behaved.

- .2920
- .3870

04-.2007

+BMDQ2T (TSPACK) Time Series Package; Proram Revised July 1, 1979 ,(Cpyright (c)

1979,Regents of University of California. (Storage 16003.)

'The histogram of the residuals indicates that the normality assumption ror the Box and

renkins ARIMA process does not hold.
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TABLE 13

OTHER DATA SETS
(BACKCASTI NG MErTHOD)

ARTMA(p,dq) ESTIMATED

(p,dq) PARAMETERS V,'HITE NOISE NOTE

(1) (2,0,(2,3,4)) ' 1.5261 Y - -. 00112 Histopram of Rcs;uals" N(fO' 2 )"

Ccntcmd 4'2 -. 5339 S, - 0.129 The ACF and PACF re -, vl! behaved

" - -1.85 O2 " 0.2920

Sy -0.370 W3 0.3870

W4 0.2007

(2) (2,0,(2,3,4)) 4'1 1.5273 d - -. 00121 -N(0,cr 8
2 )

Centered 4'2 -. 5360 S4  0.126 The ACF a1-4 PACF arc wli b.-maved.

Y -1.88 W2 =.3807

Sy - 0.338 93-0.3505

04 m-0.1469

(3) (2,0,(2,3,4)) , 1.5026 e - -. 00049 -N(O,oY 2)

Centered 4'2 - -. 5141 S. -- 0.134 The ACF and PACP are well behaved.

Y -1.80 W2 - 0.2972

Sy 40.44 93-0.3682

04 -0.1162

In all three cases the histogrpms of the residuals of ine ARIMA fit indvicated
nomriality.
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V SUMMARY

The purpose of this research on the 1980 APG test data was to provide a simulation of
the response of the passive and active sensors by time series analysis. Two successful
models have been developed. These simulations have provided a realistic method to
introduce false alarms and the distortion of target signatures due to the clutter from grassy
fields into the study of the performance of various weapon systems. The important
findings of this research are presented below.

The millimeter wave radiometric data, collected in July 1980 at APG and andyied in
this report, has resulted in the same ARIMA(,0,1) structure as the August 1978
radiometric data collected at Rome, New York, with a similar sensor. A plot of (L,Z,) ror
L-I,500 is shown in Figure 20, where Z, is generated using Equation (11.4) and the
parameter values in Table 8, and then calibrated in Kelvins. If this plot is compared with
the actual radiometric data in Figure 1, the agreement is good except for the seasonal
variation of the actual data with a period of approximately 300 lags.

There are some possible physical explanations of this cyclic behavior, which were not
present in the Rome tests, viz.,

1. In the Rome tests the radiometer was the only sensor being tested,
whereas in the 1980 APG tests the radiometer was placed on a spinning
mount along with an active sensor. The two sensors shared the same
receiving antenna, and there may have been some radar interference
with the radiometer.

2. There may have been some problem with the slip rings through
which the radiometric signal was carried to the recording
devices.

3. There may have been some radio frequency interference, (RFI).

To address the cyclic behavior of the data by time series modeling is a non trivial
problem of seasonality, which has not been attempted in this report. Basically, our
simulation is felt to be an adequate representation of the original data.

There are some other differences between the Rome tests and the APG tests. Both
data sets were digitized at the rate of 2000 samples per second. Since. the spin rate of the
radiometer was 4 rps at Rome and 3 rps at APG, there were 500 observations per
revolution of the sensor at Rome compared with - 667 observations per revolution at
APG. In each test the helicopter flew at a,,proximately the same speed. This means that
the consecutive digitized footprints of the sensor on the ground were closer to tach other
at APG than at Rome. Therefore, the ACF of the APG data had a stronger autoregressive
structure; i.e., the values of the ACF at the various lags were closer to unity for the 36
lags studied than the values of the ACF for the Rome data.
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Finally, the two tests were not carried out on identical grassy fields, nor were the
weather conditions exactly the same. Nevertheless, it is worth noting that the same
ARIMA(1,0,1) model adequately describes both the Rome and APG data.

On the other hand the millimeter wave radar data, collected simultaneously with the
July 1980 radiometer data at APG and analyzed in this report, at first had to be
transformed by a Box-Cox transformation before the time series analysis could be done.
The reason for the transformation was that the the original radar data was skewed and the
deviations were not symmetric about the mean as well as having positive deviations larger
in magnitude than those in the negative direction. In order to balance the positive and
negative magnitudes of the deviations, the properties of a log transformation with a shift
of -2.91 was used. Then, this transformed data was analyzed using the Box and Jenkins
process. The analysis indicated an autoregressive- moving average ARIMA model of order
p-2 and q-2,3,4 . A plot of (L,Z,) for L-1,500 is shown in Figure 21. where Z, is
generated using Equations (IV.8) and (IV.9) and the parameter values in Table 12, and
then calibrated as radar cross section in meters squared. If this plot is compared with the
original data of Figure 2, the agreement is quite satisfactory.
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APPENDIX A

A time series data transformation that is required for the radar data in using the Box-
Jenkins modeling approach is as follows:

Data Transformation (Box-Cox)

* Order/ranking of original observations is maintained after the transformation.

" The deviations of the transformed data are symmetric about the mean.

Hence,a natural logarithmic transformation In() was selected, which maintains the
order of the original observations. The minimum, mean, maximum, and standard
deviation of the random variable (Z,) for the first data set is:

min In(Z) - 1.09,

meanIn(Z, ) - 1.12,

max In (Z,) - 1.22,

standard deviation of in (0) - 0.0223

One method of accomplishing symmetry about the mean is by setting the
transformation of the original dam IZ t ) such that the extreme deviations from the mean
are equal. That is,

[in(3.40+A)-in(3.08+A)]-[in(3.08+A)-In(2.96+A)l (A.1)

where A is a shift. Then

In ( 3.40 + A ) + in ( 2.96 + A )-2 In( 3.0 + A). (A.2)

If the In (0) is removed,

(3.40 + A X 2.96 + A )(3.08 + A )2 , (A.3)

where A -- 2.89.

Using the { in( Z, - 2.89) } transformation results in

min Yt - -2.66,
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mean Y, -1.73,

max Y, - -0.673,

standard deviation - 0.329

AL - mean Yt -m in Y, - 0.93,
and

AM - max Y, - mean Y, - 1.057.

Then,
AM - AL - .127,

which implies that the deviation in the maximum (positive direction) is larger by .127. It is
desirable to back shift by .5(.127) - .0635 . So an adjustment was made to a shift of -2.91

with the result that

min Yt - 2.9957,

mean Yt -- 1.85,

max Yt -- 0.71335,

standard deviation - 0.370

AL - 1.145,
and

AM - 1.138.

Hence, the Y, - In( Z, - 2.91 ) data transformation accomplishes the objective of maling
the deviation symmetric about is mean.
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